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Abstract

Patient’s genetic background, especially in the HLA and CCR5 regions, strongly influences outcomes 
of HIV-1 infection. Understanding how host genetic factors can contribute to disease progression can 
help guide intervention strategies. To date, it has been estimated that HLA and CCR5 loci account for 
around 13% of variations in viremia set point. However, a key question in understanding all complex 
phenotypes, including HIV-1 progression, is what degree of influence different genetic variants can have. 
Presence of a 32bp deletion in CCR5 gene is associated with slower progression of HIV infection and 
positive effect on survival among cART untreated patients. Some studies have assessed CCR5-Δ32 as 
the most potent protective variant, both in immunological and viremic context, unrelated to HLA. 
Variants of  CCR2 (rs1799864) are associated with slower progression to AIDS. CX3CR1 variant 
(rs3732378) may limit the shift in HIV-1 tropism from R5 to X4. This polymorphism may influence 
both disease progression and HIV tropism. HLA-C -35 (rs9264942) C/C variant is associated with 
a significant reduction in HIV viral load compared to T/T homozygote. Moreover, HLA-B*5701 has 
been confirmed to be more common in patients with slow disease progression to AIDS. 
Patient’s genetic background, especially in HLA and CCR5 regions, strongly influences the progres-
sion of HIV-1 infection as well as viremic and immunologic values. 
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Introduction 
Human immunodeficiency virus 

HIV (human immunodeficiency virus) belongs to the ge-
nus of lentiviruses, the retrovirus family. It is a group VI RNA 
virus (ssRNA-RT) that causes acquired immune deficiency 
syndrome (AIDS). Most likely it evolved from simian immu-
nodeficiency virus (SIV) [1]. HIV virion is spherical [2] in 
shape, with a  double lipoprotein envelope with glycopro-
teins, including trans-membrane gp41 and extra-membrane 
gp120. Inside viral capsid, apart from genetic material, there 

are reverse transcriptase (RT), HIV protease, and integrase 
(IN) [3]. 

HIV is divided phylogenetically into HIV-1 and HIV-2, 
and both are morphologically indistinguishable from each 
other, but differ in their genetic sequence and antigenic 
structure. In Poland, practically, only HIV-1 infections are 
present. HIV-1 is differentiated into several types, such as 
M, N, O, and P, and type M is divided into several sub-types, 
including A-D, F-H, J. and K [4]. 

HIV infects cells that have a CD4 receptor on their sur-
face. These are mainly T helper lymphocytes, but also mac-
rophages, dendritic cells, microglia, monocytes, eosinophils, 
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Within this group, special cases of so-called ‘elite and vire-
mic controllers’: people controlling HIV infection without 
ARV treatment are found. Elite controllers are patients who, 
despite being infected, maintain undetectable HIV viral 
load, and viremic controllers are patients who do not achieve 
a viral load higher than 50-2,000 copies/ml, despite no an-
tiretroviral treatment [12]. Typical loss of CD4 lymphocytes 
during HIV infection is 30-40 CD4 lymphocytes/μl/year.  
It has been observed that, although patients who are elite 
controllers have undetectable viremia, they can lose CD4 
lymphocytes as much as 53/μl/year [11]. 

Progression of  immunodeficiency is inhibited by effec-
tive antiretroviral therapy. In addition to its’ specific genet-
ic variants, they may have a  significant influence on both 
the immune and viremic response of the host. 

Patient’s genetic background, especially in the HLA and 
CCR5 regions, strongly influences the  outcomes of  HIV-1  
infection. Understanding how host genetic factors can con-
tribute to disease progression, can help guide intervention 
strategies. To date, it has been estimated that the  HLA and 
CCR5 loci account for around 13% of the variation in viremia 
set point [13]. However, a key question in understanding all 
complex phenotypes, including HIV-1 progression, is what 
degree of influence different genetic variants can have [14]. 

Purpose 
The aim of  the  study was to indicate the  current state 

of knowledge of the impact of genetics on the clinical picture 
of HIV infection, and to indicate fields, in which further re-
search and assessment of patients can be possible. 

Brief description of the status 
of knowledge 

Genetic variants influencing  
HIV infection 

CCR5 

CCR5 is one of the main coreceptors involved in HIV-1  
entry into the  cell. Polymorphisms in the  coding gene as 
well as in the promoter of this gene cause changes in the ex-
pression of receptors on the cell surface, and therefore affect 
the  progression of  infection [15, 16]. CCR5, also known 
as CD195, is one of  the b-chemokine receptors. The  gene 
that encodes this receptor is found on chromosome 3, the  
p branch at position 21. CCR5 has many allelic variations, 
one of which is the delta32 mutation (rs333), which causes 
deletion of  32 bp, ultimately producing a  non-functional 
receptor. HIV-1 requires the  CCR5 and CXCR4 receptors 
of CD4 lymphocyte to bind to the viral gp120 glycoprotein to 
enter the cell. When a Δ32 mutation occurs, HIV-1 is unable 
to enter T cells. People who are homozygous, Δ32-Δ32, are 
in fact resistant to HIV-1 infection [17]. CCR5-Δ32 occurs 
in 5-14% of European citizens, but almost in none citizens 
of Asia and Africa [17, 18]. 

and thymus cells. Entry into host cell begins at the junction 
of gp120 glycoprotein with CD4 membrane receptor [5, 6]. 
The  combination of  gp120 with CD4 initiates changes in 
cell conformation revealing coreceptor target sites, of which 
the  main role is played by CCR5 receptor (b-chemokine 
receptor) and CXCR4 (a-chemokine receptor) [7]. After 
the gp41 domain is exposed, the sheath fuses with the host 
cell membrane, and the  virion enters the  cell cytoplasm.  
Viral RNA is then reverse transcribed (viral enzyme: reverse 
transcriptase). Then, the viral DNA is transported to the cell 
nucleus and incorporated into genetic material of  the host 
cell with the help of viral integrase enzyme. This is followed 
by translation of  genetic material and later, formation of  
viral proteins. Resulting virions leave the  cell by budding 
and lysing it [8]. 

The HIV infectious materials are blood, semen, pre- 
ejaculate, vaginal and rectal secretions, mammary gland  
secretions, or unfixed human tissues. Routes of HIV infec-
tion are associated with infectious materials, i.e., intravenous 
injections with non-sterile equipment, transfusion of infect-
ed blood, occupational exposures, or sexual contacts as well 
as vertical transmissions (mother-to-child) [9]. 

Natural course of HIV infection 

Natural course of HIV infection consists of early retrovi-
ral infection (described in 2003 by Fiebig et al. [10]), period 
of symptomatic HIV infection, and finally, acquired immu-
nodeficiency syndrome (AIDS). According to Fiebig et al., 
primary HIV-1 infection consists of 6 stages: 
•	 Stage	I:	HIV	in	blood	samples	is	only	detected	by	mole­

cular methods. 
•	 Stage	II:	positive	tests	for	p24	antigen	and	HIV­1	RNA,	

and non-reactive EIA antibodies. 
•	 Stage	 III:	 RNA	 of  HIV­1­positive,	 p24	 antigen,	 IgM­ 

reactive EIA-sensitive antibodies, but Western blot with-
out HIV-1 specific bands. 

•	 Stage	IV:	as	stage	III,	but	additionally	undefined	West-
ern blot results, i.e. presence of HIV-1-specific Western 
blot bands that do not meet interpretation criteria for 
FDA-defined Western blot reactive test (reactivity of two 
of the following three bands: p24, gp41, gp120/160). 

•	 Stage	V:	as	stage	IV,	but	reactive	Western	blot	except	for	
no p31 reactivity. 

•	 Stage	VI:	as	stage	V,	but	complete	Western	blot	reactivity,	
including p31 band. 
From the moment of infection to the onset of full-blown 

AIDS, an average of about 10 years passes, during which in-
fections associated with immunodeficiency caused by HIV 
not meeting criteria of opportunistic infections, may occur 
with varying frequency. The highest level of viremia is ob-
served in patients with acute retroviral disease and later, in 
the  phase of  full-blown AIDS. Studies on natural history 
of HIV infection have estimated that during the first 8 years 
of  follow-up, viremia increases by 0.04 log copies/ml/year 
[11]. It has been estimated that almost everyone with HIV 
would experience progression of infection if left untreated. 
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The presence of a 32 bp deletion in the CCR5 gene is asso-
ciated with slower progression of HIV infection and a posi-
tive effect on survival among cART untreated patients [19]. 
Various studies have assessed CCR5-Δ32 as the most potent 
protective variant, both in immunological and viremic con-
text, unrelated to HLA [13, 20]. 

The CCR5 promoter (rs1799988) is one of  the  genetic 
variants influencing progression to HIV. Its’ protective effect 
involves modifying the  expression of  CCR5 receptors on 
the surface of CD4 cells, which changes the ability of HIV to 
infect other cells [21]. 

CCR2 

CCR2 is a  chemokine receptor also known as CD192.  
It is encoded by the  CCR2 gene, which is responsible for 
encoding of  two isoforms of  monocyte chemoattractant-1 
CCL2 receptor (responsible for monocyte chemotaxis). This 
protein is influencing migration of monocytes in inflamma-
tory diseases, such as rheumatoid arthritis, and is also re-
sponsible for inflammatory response to tumors. Receptors 
encoded by this gene mediate agonist-dependent calcium 
mobilization and inhibit adenylate cyclase. 

In an animal model, mice lacking CCR2 were more like-
ly to develop disorders similar to Alzheimer’s dementia [22], 
relatively more eosinophils were detected in their adipose 
tissue, and had a greater tendency to deposit this tissue with 
a high-fat diet [23]. HIV-1, in addition to using the CCR5 
receptor to enter the cell, may use other receptors, including 
CCR2. Variants of this trans-membrane receptor are associ-
ated with slower progression to AIDS, while its’ impact on 
susceptibility to HIV-1 infection is not fully understood till 
date [24]. 

CX3CR1 

CX3CR1 is a gene encoding a protein of the same name 
(CX3CR1), also known as a fractalkine receptor, or a paired 
G-protein receptor 13 (GPR13), it is a CX3CL1 chemokine 
binding protein, including fractalkine or neurotactin [25]. 
In addition to the function of the CX3CL1 ligand for fractal-
kine, this protein has an influence on adhesion and migra-
tion of leukocytes. Moreover, CX3CR1 is also a co-receptor 
for HIV-1, and plays a  role in the  entry of  the  virus into 
the cell. Modifications of this gene may result in greater sus-
ceptibility to HIV-1 infection and faster progression to ac-
quired immune deficiency syndrome (AIDS) [26]. 

For CX3CR1 variant (rs3732378), an allele of  this SNP 
may limit the shift in HIV-1 tropism from R5 to X4. This ef-
fect may be related to the amount of co-receptors on the cell 
surface. Polymorphism of this chemokine receptor gene may 
influence both disease progression and HIV tropism [27]. 

HLA-C 

Rs9264942 is a 5’ region of the HLA-C gene 35kb from 
the beginning of transcription, which can occur in different 
genetic variants (T/T, C/T, and C/C). About 10% of Euro-

pean citizens carry the C/C variant, which is associated with 
a significant reduction in HIV viral load compared to T/T 
homozygote [28, 29]. HLA-C antigens play a  key role in 
the control of HIV infection, both by acting as ligands for 
KIR presented on NK cells and directly by presenting the anti-
gen to cytotoxic T lymphocytes [30-32]. Degree of NK lym-
phocyte activation depends on HLA-C expression [33]. This 
mechanism is most likely related to the level of HLA-C mRNA 
and surface expression depending on the given SNP. Among 
C/C homozygotes, the overall expression level of HLA-C was 
approximately 1.7 times higher than in cases with –35 T/T 
rs926494243 genotype. HLA-C influences immune activity in 
both chronic viral infections, i.e., HIV and HCV, and in auto-
immune diseases, such as Crohn’s disease, autoimmune liver 
disease, Graves’ disease, and psoriasis [30, 34-37]. 

HLA-B*5701 

HLA-B*57 is a  split B17 antigen, and its’ designation 
is widely used in care of HIV-infected patients, as it deter-
mines abacavir hypersensitivity reaction. Prior to a routine 
introduction of HLA-B*5701 in HIV testing, approximately 
8% of patients receiving abacavir experienced hypersensitiv-
ity reactions, including the risk of developing a life-threaten-
ing anaphylactic reaction, if re-administered with the drug. 
Only determination of HLA-B*57 made it possible to reduce 
this risk, thanks to a positive prediction value (PV) of 61.2%, 
a negative PV of 95.5%, a sensitivity of 44%, and a specificity 
of  96% [38]. The  prevalence of  this genetic variant ranges 
from 1.53% to 7.75%. In Europe, it is around 4.98% [39]. 
Earlier studies by the Szczecin Center showed that it occurs 
in approximately 4.7% of infected Poles [28, 40]. Protective 
effect of HLA-B*5701 is presumed to result from more ef-
fective HLA I T cell response to HIV-1 antigens, which is 
associated with less mutational escape leading to a  better 
replication control and lower viral load [29, 41-45]. 

One variant widely associated with a significant protec-
tive effect on HIV replication and delayed disease progression 
is HLA-B*5701 [42]. It has been confirmed that this allele 
is more common in patients with slow disease progression 
to AIDS, including elite HIV controllers [42]. HLA-B*5701 
may also have a  significant effect in diseases, such as pso-
riasis [46, 47] and drug-related liver injury (DILI) [48]. 
HLAB5701 is currently the only genetic variant that is rou-
tinely and extensively tested in HIV-infected patients. 

Many genetic variants affect the course and progression 
of HIV infection, especially in the HLA and CCR5 regions. 
In addition, a number of other HLA variants, such as HLA-
Cw0102 or HLA-B*2705 as well as allele combinations, in-
cluding HLA-B*5701-Cw0602, HLA-B*2705-Cw0102, and 
HLA-B*3801-Cw1203, were associated with modification 
of HIV titre and differences in the  rate of deterioration of 
immune system, which may affect survival among people 
living with HIV/ AIDS (PLWHA) [49]. A wide range of ge-
netic variants influencing the progression of infection pro-
vides important opportunities in a detailed patient’s assess-
ment. 
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Conclusions 
Patient’s genetic background, especially in the HLA and 

CCR5 regions, strongly influences the progression of HIV-1 
infection as well as viremic and immunologic values. Of the 
numerous variants affecting HIV infection, only HLA B5701 
is widely performed in clinical practice, which makes it dif-
ficult to evaluate more widely some of these variants influ-
encing HIV infection. 
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